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Our recent investigations on iron-catalyzed cross-coupling reac-
tions of organomagnesium reagents with various electrophiles were
guided by the hypothesis that bare, low-valent iron clusters formed
in situ from FeX3 and excess RMgX might account for the catalytic
turn-over.1-4 Since the unambiguous characterization of such highly
reactive species is problematic, our ongoing mechanistic studies
rely on the use of the Fe(0)-ate complexes1a,b and the
Fe(-II)-ate complex2 as adequate surrogates. These structurally
well-defined compounds5 comprise very electron-rich metal centers
within a coordination sphere of weakly bound alkene ligands. In
fact,1 and2 turned out to be exceptionally potent catalysts able to
induce even the cross-coupling of arylmagnesium halides withalkyl
bromides and -iodides, which are particularly difficult to ac-
complish.6-8

Encouraged by these results, we launched a program to inves-
tigate the as of yet largely unexplored chemical behavior of such
ferrate complexes in more detail. This seemed particularly attractive
since 1 and 2 are readily available from inexpensive starting
materials in multigram amounts (for the preparation of>23 g of1
from ferrocene, see the Supporting Information).5 We supposed that
replacement of the weakly ligated alkenes in1 by chelating
substrates such as 1,6-enynes might engender oxidative cyclization
due to the very electron-rich metal center of the ate complex and,
hence, trigger, for example, skeletal reorganizations of the Alder-
ene-type (Scheme 1).9 Apart from a few remarkable exceptions,10,11

Alder-ene reactions of enynes are commonly performed withnoble

metal catalysts.12,13 Ferrate complexes might, therefore, constitute
cheap, nontoxic, and benign alternatives that are readily available
in quantity.

In line with this notion, enyne3a was converted to the Alder-
ene product4a in excellent yield on exposure to 5 mol % of the
Fe(0)-ate complex1a in toluene at 80-90 °C for 6 h (Table 1,
entry 1). The analogous COD complexes1b,c were similarly

Scheme 1

Table 1. Screening of Various Ferrate Complexes; E ) COOEt

entry catalyst yield (%)

1 [CpFe(C2H4)2] [Li(tmeda)] (1a) 83
2 [CpFe(cod)] [Li(dme)] (1b) 80
3 [CpFe(cod)] [Li(tmeda)] (1c) 82
4 [CpFe(CO)2] Na (3) 0
5 [(C2H4)4Fe] [Li(tmeda)]2 (2) 0

Table 2. Iron-Catalyzed Cycloisomerizations of Enynes with
Cyclic Alkene Moieties; E ) COOEt, unless Stated Otherwise

a With 15 mol % (1a), 72 h reaction time.b Ar ) p-MeOC6H4. c Ar )
Ph. d E ) COOMe.e With 10 mol % (1a). f Ratio of cis:trans) 1:2.
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effective, although a somewhat longer reaction time (12 h) was
necessary (entries 2 and 3). This rate difference might be explained
by the more facile and irreversible substitution of the ethylene
ligands in1a by the enyne, whereas the chelating COD in1b is
arguably more difficult to replace, remains in solution, and might
therefore compete with substrate binding. Formal replacement of
the alkene groups in1 by strongly bound CO (complex3,14 entry
4) results in complete loss of catalytic activity, likely because an
exchange of these ligands with the substrate cannot occur. The fact
that the tetraethylene ferrate2 is catalytically inert is ascribed to
the lability of this complex at higher temperatures.

The scope of the iron-catalyzed Alder-ene reaction is evident
from the results compiled in Tables 2 and 3. Although we were
concerned about the potential basicity of complex1a, enynes
containing terminal acetylene units posed no problems. Likewise,
different substituents on the alkyne are well accommodated,
including electron-withdrawing substituents, cyclopropyl- and silyl
groups. The latter result is noteworthy as silylated enynes are
unsuitable for Alder-ene reactions catalyzed by low-valent titanium
reagents.11 Particularly remarkable is the compatibility of the iron
catalyst with various functional groups, including esters, ketones,
acetals, silyl ethers, aryl halides, and cyclopropanes; even a tertiary
amine in the tether does not interfere (cf. entry 14). Entry 21 shows
that a 1,7-enyne could also be cyclized in decent yield. With regard
to the cycloalkene part of the substrate, increase of the ring size
renders the reaction more facile. This is evident from the fact that
the [3.3.0]bicyclooctene derivative5 was the most difficult to form
among all products compiled in Table 2. While5 and its homologue
6 are cis-annellated, all other products shown in Table 2 feature
trans-annellated rings,15,16with theexocyclicdouble bond invariably
showing the expectedE-configuration. While theendocyclicalkene
is forced to beZ in products4-9 due to the small (e8) size of the
pre-existing ring, only theE-isomer is observed in the 10- and 12-
membered series (entries 16-20),17 even though the substrates used
in these cases were isomeric mixtures.

Table 3 shows representative examples of iron-catalyzed reactions
of acyclic enynes. The striking observation that a substituent R*

H next to reacting olefin moiety is required for productive
cyclization (cf. entries 1 and 2) is general. Substrates of this type,
however, perform exceptionally well, affordingtrans-disubstituted
products as the major isomers in all cases investigated. Whether
this effect indicates that a certain degree of conformational
preorganization of the enyne is mandatory or if it has other
mechanistic implications9 is subject of ongoing studies in this
laboratory.
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Table 3. Cycloisomerizations of Acyclic Enynes Catalyzed by
Complex 1aa,b,c

a With 5 mol % of catalyst, toluene, 80-90 °C, 3-6 h, unless stated
otherwise.b Only the major isomer is depicted.c E ) COOEt.d 1a (30 mol
%), 1 h.
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